Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Isotropic quantum scattering and unconventional superconductivity

Identifieur interne : 000202 ( Russie/Analysis ); précédent : 000201; suivant : 000203

Isotropic quantum scattering and unconventional superconductivity

Auteurs : RBID : Pascal:09-0095460

Descripteurs français

English descriptors

Abstract

Superconductivity without phonons has been proposed for strongly correlated electron materials that are tuned close to a zero-temperature magnetic instability of itinerant charge carriers1. Near this boundary, quantum fluctuations of magnetic degrees of freedom assume the role of phonons in conventional superconductors, creating an attractive interaction that 'glues' electrons into superconducting pairs. Here we show that superconductivity can arise from a very different spectrum of fluctuations associated with a local (or Kondo-breakdown) quantum critical point2-5 that is revealed in isotropic scattering of charge carriers and a sublinear, temperature-dependent electrical resistivity. At this critical point, accessed by applying pressure to the strongly correlated, local-moment antiferromagnet CeRhIn5, magnetic and charge fluctuations coexist and produce electronic scattering that is maximal at the optimal pressure for superconductivity. This previously unanticipated source of paking glue6 opens possibilities for understanding and discovering new unconventional forms of superconductivity.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:09-0095460

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Isotropic quantum scattering and unconventional superconductivity</title>
<author>
<name sortKey="Park, T" uniqKey="Park T">T. Park</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Los Alamos National Laboratory</s1>
<s2>Los Alamos, New Mexico 87545</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Los Alamos National Laboratory</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, Sungkyunkwan University</s1>
<s2>Suwon 440-746</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Suwon 440-746</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sidorov, V A" uniqKey="Sidorov V">V. A. Sidorov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Los Alamos National Laboratory</s1>
<s2>Los Alamos, New Mexico 87545</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Los Alamos National Laboratory</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Vereshchagin Institute of High Pressure Physics, RAS</s1>
<s2>142190 Troitsk</s2>
<s3>RUS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>142190 Troitsk</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ronning, F" uniqKey="Ronning F">F. Ronning</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Los Alamos National Laboratory</s1>
<s2>Los Alamos, New Mexico 87545</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Los Alamos National Laboratory</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhu, J X" uniqKey="Zhu J">J.-X. Zhu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Los Alamos National Laboratory</s1>
<s2>Los Alamos, New Mexico 87545</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Los Alamos National Laboratory</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tokiwa, Y" uniqKey="Tokiwa Y">Y. Tokiwa</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Los Alamos National Laboratory</s1>
<s2>Los Alamos, New Mexico 87545</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Los Alamos National Laboratory</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lee, H" uniqKey="Lee H">H. Lee</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Los Alamos National Laboratory</s1>
<s2>Los Alamos, New Mexico 87545</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Los Alamos National Laboratory</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bauer, E D" uniqKey="Bauer E">E. D. Bauer</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Los Alamos National Laboratory</s1>
<s2>Los Alamos, New Mexico 87545</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Los Alamos National Laboratory</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Movshovich, R" uniqKey="Movshovich R">R. Movshovich</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Los Alamos National Laboratory</s1>
<s2>Los Alamos, New Mexico 87545</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Los Alamos National Laboratory</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sarrao, J L" uniqKey="Sarrao J">J. L. Sarrao</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Los Alamos National Laboratory</s1>
<s2>Los Alamos, New Mexico 87545</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Los Alamos National Laboratory</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Thompson, J D" uniqKey="Thompson J">J. D. Thompson</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Los Alamos National Laboratory</s1>
<s2>Los Alamos, New Mexico 87545</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Los Alamos National Laboratory</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">09-0095460</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 09-0095460 INIST</idno>
<idno type="RBID">Pascal:09-0095460</idno>
<idno type="wicri:Area/Main/Corpus">005B34</idno>
<idno type="wicri:Area/Main/Repository">006382</idno>
<idno type="wicri:Area/Russie/Extraction">000202</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0028-0836</idno>
<title level="j" type="abbreviated">Nature : (Lond.)</title>
<title level="j" type="main">Nature : (London)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anisotropy</term>
<term>Antiferromagnetic materials</term>
<term>Attraction interaction</term>
<term>Cerium alloys</term>
<term>Degrees of freedom</term>
<term>Electrical conductivity</term>
<term>Electron interaction</term>
<term>Fluctuations</term>
<term>Indium alloys</term>
<term>Phase diagrams</term>
<term>Rhodium alloys</term>
<term>Strongly correlated electron systems</term>
<term>Superconductivity</term>
<term>Superconductors</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Anisotropie</term>
<term>Supraconductivité</term>
<term>Diagramme phase</term>
<term>Système électrons fortement corrélés</term>
<term>Fluctuation</term>
<term>Degré liberté</term>
<term>Interaction attraction</term>
<term>Interaction électronique</term>
<term>Conductivité électrique</term>
<term>Supraconducteur</term>
<term>Matériau antiferromagnétique</term>
<term>Cérium alliage</term>
<term>Rhodium alliage</term>
<term>Indium alliage</term>
<term>CeRhIn5</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Superconductivity without phonons has been proposed for strongly correlated electron materials that are tuned close to a zero-temperature magnetic instability of itinerant charge carriers
<sup>1</sup>
. Near this boundary, quantum fluctuations of magnetic degrees of freedom assume the role of phonons in conventional superconductors, creating an attractive interaction that 'glues' electrons into superconducting pairs. Here we show that superconductivity can arise from a very different spectrum of fluctuations associated with a local (or Kondo-breakdown) quantum critical point
<sup>2-5</sup>
that is revealed in isotropic scattering of charge carriers and a sublinear, temperature-dependent electrical resistivity. At this critical point, accessed by applying pressure to the strongly correlated, local-moment antiferromagnet CeRhIn
<sub>5</sub>
, magnetic and charge fluctuations coexist and produce electronic scattering that is maximal at the optimal pressure for superconductivity. This previously unanticipated source of paking glue
<sup>6</sup>
opens possibilities for understanding and discovering new unconventional forms of superconductivity.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0028-0836</s0>
</fA01>
<fA02 i1="01">
<s0>NATUAS</s0>
</fA02>
<fA03 i2="1">
<s0>Nature : (Lond.)</s0>
</fA03>
<fA05>
<s2>456</s2>
</fA05>
<fA06>
<s2>7220</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Isotropic quantum scattering and unconventional superconductivity</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PARK (T.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SIDOROV (V. A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>RONNING (F.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ZHU (J.-X.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>TOKIWA (Y.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>LEE (H.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>BAUER (E. D.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>MOVSHOVICH (R.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>SARRAO (J. L.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>THOMPSON (J. D.)</s1>
</fA11>
<fA14 i1="01">
<s1>Los Alamos National Laboratory</s1>
<s2>Los Alamos, New Mexico 87545</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Physics, Sungkyunkwan University</s1>
<s2>Suwon 440-746</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Vereshchagin Institute of High Pressure Physics, RAS</s1>
<s2>142190 Troitsk</s2>
<s3>RUS</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>366-368</s1>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>142</s2>
<s5>354000184316280190</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2009 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>24 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>09-0095460</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>CR</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nature : (London)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Superconductivity without phonons has been proposed for strongly correlated electron materials that are tuned close to a zero-temperature magnetic instability of itinerant charge carriers
<sup>1</sup>
. Near this boundary, quantum fluctuations of magnetic degrees of freedom assume the role of phonons in conventional superconductors, creating an attractive interaction that 'glues' electrons into superconducting pairs. Here we show that superconductivity can arise from a very different spectrum of fluctuations associated with a local (or Kondo-breakdown) quantum critical point
<sup>2-5</sup>
that is revealed in isotropic scattering of charge carriers and a sublinear, temperature-dependent electrical resistivity. At this critical point, accessed by applying pressure to the strongly correlated, local-moment antiferromagnet CeRhIn
<sub>5</sub>
, magnetic and charge fluctuations coexist and produce electronic scattering that is maximal at the optimal pressure for superconductivity. This previously unanticipated source of paking glue
<sup>6</sup>
opens possibilities for understanding and discovering new unconventional forms of superconductivity.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70D25H</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70D40</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Anisotropie</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Anisotropy</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Supraconductivité</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Superconductivity</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Diagramme phase</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Phase diagrams</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Système électrons fortement corrélés</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Strongly correlated electron systems</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Fluctuation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Fluctuations</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Degré liberté</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Degrees of freedom</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Interaction attraction</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Attraction interaction</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Interacción atracción</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Interaction électronique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Electron interaction</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Interacción electrónica</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Conductivité électrique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Electrical conductivity</s0>
<s5>14</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Supraconducteur</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Superconductors</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Matériau antiferromagnétique</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Antiferromagnetic materials</s0>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Cérium alliage</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Cerium alloys</s0>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Rhodium alliage</s0>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Rhodium alloys</s0>
<s5>18</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Indium alliage</s0>
<s5>19</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Indium alloys</s0>
<s5>19</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>CeRhIn5</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fN21>
<s1>068</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000202 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000202 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:09-0095460
   |texte=   Isotropic quantum scattering and unconventional superconductivity
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024